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Abstract—Network Intrusion Detection System (NIDS) is a 
system which can detect network attacks resulted from worms 
and viruses on the Internet. An efficient pattern matching 
algorithm plays an important role in NIDS. There have been 
many proposed methods for pattern matching algorithms. 
Traditionally, the multi-character NFA that is capable of 
matching multiple characters per cycle can be built by 
duplicating entire circuit of 1-character architecture. In this 
paper, we propose a pre-processing based architecture to 
improve the original multi-character architecture. The design of 
the proposed architecture and its implementation in FPGA are 
described in details. Our simulation results show that the 
proposed architecture performs better than all the existing 
Brute-Force based approaches in terms of the throughput and 
the slice utilization. Specifically, the proposed architectures of 2-
character and 4-character designs can achieve the throughputs of 
4.68 and 7.27 Gbps and the slice utilization of 2.86 and 2.10 in 
terms of char/slice, respectively. 

Keywords-Intrusion detection; Finite state machine; Multi-
character; Pattern matching 

I.  INTRODUCTION 
 

A large number of malicious attacks and worms spread on 
the Internet every day. As a result, many networks are 
vulnerable to the attacks. Network Intrusion Detection System 
(NIDS) is a detection system which can detect malicious 
attacks and protect the network systems. The pattern matching 
algorithm plays an important role in NIDS. Traditionally, 
pattern matching has software-based and hardware-based 
solutions. Software-based solutions have their limits in system 
processing speed. So, there have been several proposed FPGA-
based hardware solutions. The deterministic finite automata 
(DFA) and non-deterministic finite automata (NFA) are typical 
methods for the pattern matching architectures. 

The deterministic finite automata (DFA) approach uses a 
state machine to track partial pattern matches across clock 
cycles. For this reason, it is possible to match complex regular 
expression using this technique. A DFA will take in a string of 
input character. In DFA definition, a DFA can have only one 
active state. An advantage of a single active state is a compact 
state encoding, which allows for efficient context switches that 
are useful in certain applications. Non-deterministic finite 
automata (NFA) approach can reduce the transition complexity 
by allowing multiple active states. NFA has a balance of logic 

and state that maps well to current architecture, allowing them 
to achieve compact density. 

The most popular real pattern sets are from the open source 
software such as Snort [10] for intrusion detection and 
ClamAV [1] for anti-virus. The requirements can be concluded 
to be those matching the variable-length, multiple patterns and 
on-line processing of all packet inspection systems. 

The rest of the paper is organized as follows: In section II, 
we review and summarize the related work. In section III, we 
present our scheme. In section IV, we propose our multi-
character architecture and describe the solution of the false 
positive that may be incurred by our simple design. In section 
V, we present the multi-character simulation results with a 
summary of our design and the comparison of our scheme with 
other similar projects. Finally, in section VI, we present the 
conclusions. 

II. RELATED WORK 
Since the throughput of hardware-based solutions is much 

higher than the software-based ones, many FPGA based 
implementations are proposed for network intrusion detection 
in recent years. In this section, we will briefly introduce some 
pattern matching architectures in previous works. 

The brute-force (BF) approach compares the pattern with 
the packet payload (called input string or text) for each possible 
substring relative to the beginning of the packet payload. The 
BF algorithm compares a character in the pattern and a 
character in the text from left to right. In case of a match or 
mismatch, it shifts only one position to the right. Take input 
string “aabbcda” and pattern “bcd” as an example. In the first 
attempt, the first characters from both input string and pattern 
are compared. Since they don’t match, the search is shifted one 
position to the right. The second attempt also results in a 
mismatch, and the search is shifted one position to the right. In 
the third attempt, the first characters match, but the second 
characters don’t match. The search is again shifted one position 
to the right. The fourth attempt results in a match, and the 
searched pattern is found in the text. The Brute-Force algorithm 
has O(nm) worst case time complexity, where n is the length of 
text and m is the length of pattern.  

Figure 1(a) shows the BF architecture whose pattern is 
“Processor” where the nine blocks are character comparators. 
Each character comparator compares a 1-byte character of text 
per clock cycle and outputs TRUE signal if the input character 
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matches the desired character of comparator. The output signal 
of comparator is connected to an AND gate with output signal 
that were detected in the previous cycle. The final match signal 
is obtained from the last AND gate. For example, if the input 
text “Processor” arrives in order, the first comparator matches 
“P” and output “1” to the flip-flop. In the next clock cycle, the 
second comparator matches “r” and the output signal combined 
with the output signal at previous stage by AND gate. The 
AND gate outputs TRUE to the next flip-flop. Finally, we will 
get a match signal at ninth clock cycle. 

Traditionally, Non-deterministic Finite Automata (NFA) 
represents each state by a pipelined stage. The longer length of 
the pattern, the more slice of the circuit is needed. Similarly, if 
we want to match multiple characters in the pattern per cycle, 
the cost of hardware will be increased exponentially, compared 
to single character design. There are many researches focusing 
on BF in the literature [4, 5, 7, 8, 9, 11, 14, 15]. An example of 
the BF of multi-character architecture is shown in Figure 1(b). 
In [4], the proposed architecture uses a multi-character method 
augmented by a pre-decoder. Figure 1(b) is two-character NFA 
architecture. However, these proposed methods must duplicate 
the circuit of one-character architecture. The result is that the 
multiple-character architecture must match all possible 
substrings of the input payload and the input character may be 
shifted by one or more positions in input payload. In order to 
match all possible substrings of the payload, the circuit must 
express all kinds of input types. The duplication of the single-
character architecture results in the reduced slice utilization of 
the circuit.  

The authors in [5] improved the BF architecture and 
proposed a hardware-based pattern match architecture by 
employing a multi-character processor array. The proposed 
multi-character processor array is a parallel and pipelined 
architecture which can process multiple characters of the input 
text per clock. We proposed a regular design for multi-
character architecture [5]. In our design, the details of each 
processor element (PE) are the same. It is easy to implement 
and increase multi-character degree due to the regularity of the 

PE. In general, it is a trade-off of throughput and area cost. 
Throughput of the architecture is decreased as area cost is 
increased. Therefore, we provide a precise method to design 
multi-character architecture for processing N bytes per cycle. 
The important addition what we have said about our design is 
we reduce 83% of the computations compared with the brute-
force approach. 

In [8] the authors have proposed the idea of pattern infix 
sharing to reduce the number of slices per pattern match engine 
across many similar patterns. Hutchings et al. [7] proposed a 
method to reduce the area cost of BF approach. They share the 
circuits of common prefix in different pattern. But this 
technique is not useful on FPGA. Based on the simulation 
results by using FPGA software, the area cost of sharing prefix 
is similar to the cost of BF approach. Processing multiple input 
characters per cycle is needed in order to improve the 
throughput. The BF matching module can be scaled by simply 
widening the bus and adding duplicate modules. But the 
architecture is not regular and wastes too many computations 
when comparing characters. 

One of the early exact string matching algorithms of 
Automata design approach is the Aho-Corasick [2] algorithm. 
The Aho-Corasick algorithm locates all occurrences of any 
keywords in a text string. It works in constructing a finite state 
pattern matching machine from all of the keywords, and then 
using the pattern matching machine to process the payload 
string in a single pass. The state machine starts from an empty 
root node. Each pattern to be matched adds states to the 
machine, starting at the root and going to the end of the pattern. 
The state machine is then traversed and failure pointers are 
added to indicate any disconnection between two states. The 
time complexity of Aho-Corasick algorithm is linear in the size 
of the input. 

Brodie et al. [3] also improve the throughput by processing 
the multiple characters at each clock cycle. They converted the 
regular expression patterns into DFAs and implemented them 
with pipelined FSM structures specially designed for regular 
expression matching. They also use a complicated alphabet 
encoding scheme and a transition table compression to reduce 
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the exponentially increasing number of states.  
Tan et al. [13] proposed a bit-split state machine by 

splitting Aho-Corasick state machine. The proposed algorithm 
works by separating the set of the patterns into group and 
building a small state machine for each group. Each state 
machine recognizes a subset of the patterns from the rule set. 
The disadvantage of Aho-Corasick method is that building a 
state machine requires an exponential number of states. This 
results in large amount of storage. Tan et al. [13] split the state 
machine into a new set of many binary state machines. The 
advantage of this method is that binary state machines can be 
run independently the number of states is reduced. 

III. PROPOSED SCHEME 
All transition states in traditional NFA graph are matched 

against the input character simultaneously. We find the chain 
with the least transition edge length from the initial state to a 
finish state in transition graph of NFA. The chain is called 
“transition chain” which has an equal number of states as the 
pattern length. The NFA is implemented in a pipelined 
architecture, and each state of transition chain is a pipeline 
stage. For example, with the pattern “Processor”, we 
implement the pipeline architecture as in Figure 2(a). The 
pipeline architecture is equal to Brute-Force architecture of 
Figure 1(a). However, one-character matching NFA pipeline 
architecture implementation is simple in hardware, but its 
throughput is disappointing. In order to improve the throughput, 
we usually use the multi-character matching NFA architecture. 
We can build the transition graph of multi-characters NFA and 
find the multiple transition chains in the graph. Figure 2(b) is 
the same example that finds two transition chains in two-
characters matching NFA. Each chain must be implemented as 
a pipeline circuit of two-character matching NFA as shown in 
Figure 1(b).  

Although two-character matching NFA pipeline 
architecture improves the throughput, it doubles the number of 
character comparators. The multi-character matching NFA 
increases transition edges because there are many possible 
substrings in the input string that will match the pattern. To 
reduce the doubled cost of the character comparators, we 
propose to use a pre-processing based scheme as follows. Take 

a 2-character case as an example. In the original 2-character 
NFA architecture, there are two sets of 1-character NFA 
circuits, one is called the non-shift condition and the other is 
called shift condition. We try to avoid using the shift condition 
NFA by detecting if the input string can be matched by the shift 
condition NFA. Then, we can adjust the input string in the pre-
processing unit to make it non-shift condition. 

We propose a pre-processing based multi-character 
matching transition graph as shown in Figure 3 in which the 
initial state is built as a pre-processing state.  We use two-
character matching NFA of the Figure 3(a) as an example to 
explain how the proposed architecture works. We assume input 
string is “ABCProcessor”. The 2-character input is “AB” in 
the first cycle which does not match any character. In the 
second cycle, the 2-character input is “CP” which partially 
matches the prefix of the pattern “*P”. In this cycle, the pre-
process state will hold partial matching string with “P”. In the 
next cycle, the 2-character input is "ro". The pre-process state 
will combine the 2-character inputs in the current and previous 
cycles and send combined string "Pr" to next state for 
matching. At the same time, the leftover character “o” is held 
for waiting for the 2-character input in the next cycle. We 
summarize the operations in all the cycles in Table I. The 
differences between the traditional NFA and pre-processing 
based NFA are as follows. In traditional multi-character 
scheme, total transition NFA edges increase as the number of 
input characters increases. And the number of states keeps the 
same. In the proposed pre-processing based transition graph, 
the number of the states becomes approximate 1/n of the 
traditional NFA if the number of input characters is n. The 
transition edge of each stage is only one. When we increase the 
number of input characters, the pre-processing based NFA keep 
as simple as the 1-character NFA. 

IV. PROPOSED ARCHITECTURE ON FPGA 
In this section, we implement the proposed architecture in 

FPGA.  We design a Pre-Process Module (PPM) which can 
handle the operations needed in the pre-processing state. In 
order to effortlessly explain the proposed PPM design, we use 
the same example described in previous section. For example 
in Figure 4(a), the PPM can handle the matching operations of 
three cases in which PPM should indicate a control signal.  

In case 1, the input string exactly matches the pattern 
“Processor” at each clock cycle. For initial cycle, the packet 
payload will match “Pr”. In the second and three cycles, the 
“oc” and “es” have been matched in this case. For simplifying 

***P 

Pre-Process state Normal state

Pr oc es so r*

(a) Two-character matching NFA 

*P 

** 

Pattern: “Processor” 

Proc esso r*** 

(b) Four-character matching NFA 

**Pr 

Final state 

**** *Pro 

Figure 3. Reduce transition edge and stage for Pre-Process State. 

Input payload “ABCProcessor” 
Cycle 2-character

input 
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Combined 
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substring 

1 “AB” “AB” No action “B” 
2 “CP” “CP” No action “P” 
3 “ro” “Pr” “P” and “r”  “o” 
4 “ce” “oc” “o” and “c” “e” 
5 “ss” “es” “e” and “s” “s” 
6 “or” “so” “s” and “o” “r” 
7 “**” “r*” “r” and “*” “*” 

 

TABLE I. PRE-PROCESS STATE OPERATIONS 
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description of the proposed architecture later, case 1 is called 
the “Normal Case”.  

The pattern has been cut by m-character, where m is the 
number of input characters per cycle.  In case 2, the input string 
matches k-byte suffix characters in first cycle and the non-
match (m－k)-bytes prefix characters are wildcard. The case 2 
is called “Shift Case” which may have a (m－1)-byte shift in 
pattern. In the example of case 2 of Figure 4(a), m is 2 and k is 
1. And the case 3 is called “No Match Case” which does not 
match any string in initial cycle.  

The proposed pre-processing based NFA architecture is 
constructed by two circuits as shown in Figure 4(b). The left 
one is the PPM and the right one is the two-character matching 
NFA pipeline circuit. Each comparator can contain two 
characters. PPM uses the input string to determine which case 
the current input belongs. After PPM determines the case, it 
will output shifted or non-shifted string to the next stage, which 
is called modified string in our architecture.  

A. The Detailed Design of Pre-Process Module 
The PPM is constituted by four components that are prefix 

compactor, selector, buffer, and parallel-in parallel-out (PIPO) 
shifter. 

 The prefix compactor is mainly used to compare pattern 
prefix. When the number of input character is m, prefix 
compactor needs to consider m possible shift matching 
conditions. So, we need m prefix compactors. As shown in 
Figure 4(a), m is 2, PPM have two prefix compactors, that 

are “Pr” and “*P”+“r*”. If input string is “*P” that “P” and 
“r” are separated in two continuous cycles, prefix compactor 
can identify shifted matching condition. Prefix compactor 
results will be output to the selector. 

 The selector is a special component that is designed for PPM 
to be used to control PIPO shifter output.  If we use the 
results of prefix compactor to control PIPO shifter, single 
shifter is not enough to satisfy our requirement. Some 
mistakes may occur in our architecture, explained as follows. 
When prefix comparator matches a pattern prefix, PPM 
needs to have a component to record if it is a shifted or non-
shifted condition. We design the selector for this purpose. 
The circuit of Figure 5 is the detailed design of the selector. 
We use flip-flop registers to hold on the signal of the match. 
The m-characters have m flip-flop registers. When m is 2 as 
in Figure 5, two registers are needed. As shown in the 
Characteristic Table of Figure 5, when CLK is triggered, 
S0(t+1) and S1(t+1) are the output signals of the selector. S0 
and S1 are the output signals in the previous cycle. When M1 
or M0 is set because of pattern prefix is matched at the 
current cycle, the selector will know to output shifted or non-
shifted control signal to buffer at the next cycle.  

 The buffer stores the least significant m – 1 characters of m-
character input string in the current cycle. In other words, 
when input string is “im ... i1”, the buffer will store “bm-

1 ...b1”. If m is 2, then buffer just stores the last one character 
of input string, as shown in Figure 4(a). Buffer outputs the 
stored m – 1 characters of the pervious cycle to PIPO shifter 
which in turn outputs characters to the right side NFA circuit.  

Figure 4.  The proposed architecture. 
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 The Parallel-In Parallel-Out Shifter (PIPO shifter) is a (2m–
1)-to-m multiplexer, as shown in Figure 6(a). PIPO shifter 
gets its input data from buffer and the m-character input 
string and select appropriate substring by signals from 
selector. PIPO shifter behaves like the sliding window. 
Figure 6(b) is the example of two-character PIPO shifter. 
Assume the initial three cycles have input string “*P”, “ro” 
and “ce”, respectively. In the third cycle, PIPO shifter 
includes the current input string “ce” and temporary input 
“o”. The selector selects case 2 that matches prefix pattern. 
So sliding window will shift left 1 byte and the output 
modified string is “oc”. 

B. The False Positive of Pro-Process Module 
In our architecture, we allow all possible matched cases in 

PPM. In Figure 4, we can exactly match this pattern 
“Processor” from this exercise. The m-character per cycle can 
have m+1 match cases. Each segmented pattern in PPM may 
have at most m-bytes length. This design can match the most of 
patterns in rulesets.  

But if we have a pattern “PreProcessor”, and the pattern can 
be segmented to “Pr”, “eP”, “ro”, “ce”, “ss”, and “or” for each 
cycle. The prefix sub-pattern are “Pr” and “*P” in PPM. 
Assume we have a payload input “RootPreProcessor”. There 
have a special case which may lead to a false positive in our 
architecture. From the above exercise, the input strings are 
“Ro” and “ot” in the first two cycles. At the third cycle, the 
input string is “Pr”. The selector will trigger case 1 from its 
multiplexer. This selected state has been held on since the 
trigger time. In our design, the multiplexer selects the type of 
possible cases. In the next several cycles, the suffix of the 
pattern will be matched. But in the forth cycle, the input 
payload is “eP”, the multiplexer has changed the select signal. 
This action will be effect the path to match sub-pattern. At the 
later cycles, the modified payload would not match next sub-
pattern.  

The reason that results in this problem is that the prefix sub-
pattern may repeat in the inner part of the pattern. We call this 
repeated prefix as recursive prefix. This may confuse the match 
case of multiplexer. In the example above, prefix ‘Pr’ is the 
recursive prefix. Let the maximal recursive prefix be the 
longest possible recursive prefix of the pattern. One way to 
prevent the false positive problem is to be aware if the maximal 
recursive prefix is matched or not. Specifically, we have to 
determine the maximal recursive prefix (say p1, p2…pr) and add 
extra circuit to determine if p1, p2…pr, pr+1 is matched or not. 
Figure 8 shows the design of m = 2 for the pattern 
‘PreProcessor’ in which we replace the shift registers of the 
original design, ‘Pr’ and ‘*P’+‘r*’, with ‘*P’+‘re’ and 
‘Pr’+‘e*’. In general, we perform the following steps. We 
assume that the n-byte pattern is P = p1, p2…pn and m-character 
per cycle where m < n. The prefix pattern bases the length of m-
byte which is H(m)= {p1, p2…, pm} and H(m) ⊂ P. We want to 
find out the recursive prefix pattern in P. So we also define W(i, 
m)={pi, pi+1, pi+2…, pi+m-1} which is the subset of pattern. The 
necessary condition which we want to satisfy is H(m) ≠ W(i,m). 
The method to find out the condition is to increase i of W(i,m) 
sequentially for i<n-m. When we find out any sub-pattern and 
don’t satisfy the necessary condition, we increase m by one and 
continue to perform the same steps until the condition H(m) ≠ 
W(i,m) is satisfied.  

We now give the detailed algorithm SearchPrefixPattern 
for finding the maximal recursive pattern prefix in Figure 7. 
SearchPrefixPattern receives, as the input, the n-byte pattern 
and m-character input string and return the maximal recursive 
prefix of the pattern.  

V. PERFORMANCE EVALUATION 
In this section, we present the results of hardware 

simulation implemented in Xilinx 10.1i. The simulation for 
each pattern set was synthesized, placed, and routed on the 
Virtex5 XC5VLX85 [16] chip where the package and speed are 
FF676 and -3, respectively. The pattern sets are selected from 

Figure 8. Recursive prefix “pre” of PPM where the pattern is 
“PreProcessor”. In two-character match (m=2), the original prefix 
“Pr” may has false positive to cause mismatch. It should be find out 
recursive prefix in it. 
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n – Pattern length. 
m – Multi-character per cycle. 
W(i,m) – Subset of pattern which use to compare H(m) where i is 

index of sub-pattern, and m is length of sub-pattern. 
H(m) – Recursive Prefix. 
 

Algorithm SearchPrefixPattern(P, m, n) 
{ 

01    H(m) = {p1, p2…, pm}; 
02    W(i,m) = { pi , pi+1,…, pi+m-1}; 
03    while (m ≦ n)  { 
04         for (i = 1 to n-m) {             // Search for each sub-pattern. 
05              if (H(m) == W(i,m)){    // Exist same prefix pattern. 
06                  m=m+1;                    // Add one character to prefix. 
07       break; 
08              } 
09         } // end for 
10         if (i >= n-m)                      // Return the recursive prefix. 
11              return H(m); 
12     } // end while 
13     return NULL; 
  } 
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ClamAV (Version 0.92) [1] which contains 54351 static 
patterns. Figure 9 plots the distribution of the pattern lengths 
varying from 4 bytes to 392 bytes. The average pattern length 
is 120 bytes. To evaluate whether the proposed implementation 
performs well or not, we could perform the simulations based 
on the following issues: 

Input Chars (bits): Each character is an 8-bit width data. If 
we could process more characters per cycle, we might have 
better throughput. 

Slice: Slice is the FPGA resource in Xilinx FPGA chip. The 
number of logic elements in a slice is dependent on the FPGA 
device. Number of slices represents the area cost. In Virtex-5, 
each FPGA slice contains four LUTs and four flip-flops. 

Clock period: The clock period is the speed of the 
maximum critical path in FPGA. The period can be obtained 
from the synthesis report of Xilinx software. The smaller is 
clock period, the faster is implementation. 

Throughput: Throughput = Input bits / Clock period. So 
decreasing the clock period or processing more characters per 
cycle will get better throughput. 

Characters/Slice: The “Characters/Slice” indicates the 
average number of characters that can be implemented by a 
slice.  

In general, clock period and area cost are trade-off. The 
clock period of the architecture decreases as the area cost 
increases. These two metrics are both considered when we 
compare the simulation results with different existing pattern 
matching architectures. We use a new metric “Performance” 
defined to be the area cost divided by implementation speed as 
follows.  

Area Cost Char SlicePerformance
Speed Period

= =  

The Table II shows the experiment results. The # of chars 
(the number of characters) is the total number of characters in 
all the patterns of five pattern sets. The numbers of characters 
in these pattern sets are from 928 to 16028. Two-character and 
four-character designs are simulated for each pattern set. The # 
of registers and # of LUTs show the utilization of registers and 
LUTs in our architecture. In this table, we can see that the more 
number of characters in each pattern sets, the more slice has 
been used. But we can also observe the # of register. The 4-
character has lower number of register than 2-character design 
in each pattern sets. This is because our architecture doesn’t 

# of 
Chars

Input 
Chars 
(bits) 

Proposed Pre-Process NFA Architecture 

Slice # of 
Register

# of 
LUT 

Char/ 
Slice 

Period 
(ns) 

Throughput
(Gbps) Performance

928 16 360 592 973 2.58 2.70 5.93 0.96 
32 406 301 1105 2.28 3.50 9.13 0.65 

1903 16 642 1,173 1,845 2.96 4.41 3.63 0.67 
32 692 568 2,039 2.75 3.49 9.16 0.79 

3582 16 1,258 2,224 3,564 2.85 3.41 4.69 0.83 
32 1,380 1,070 4,189 2.60 4.14 7.72 0.62 

8417 16 3,025 5,235 8,397 2.78 3.34 4.79 0.83 
32 4,127 3,328 12,171 2.04 3.99 8.01 0.51 

16028 16 5,626 9,690 15,374 2.86 3.42 4.68 0.84 
32 7,635 6,550 30,387 2.10 4.40 7.27 0.48 

 

TABLE II. EXPERIMENTAL RESULTS ON INPUT N CHARACTER PER CLOCK  

Design Device Input Chars # of Chars Slice # of 
Register # of LUT Char/Slice Throughput 

(Gbps) Performance

Our design Virtex5-LX85T 16 16,028 5,626 9,690 15,374 2.86 4.68 0.84 
32 7,635 6,550 30,387 2.10 7.27 0.48 

Chang et al. [5] Virtex5-LX85T 
8 1,796 581 1,757 1,773 3.09 2.19 0.85 

16 
16,028 

7,221 15,640 15,736 2.21 4.67 0.65 
32 15,531 15,943 48,767 1.03 6.27 0.20 

Norio Yamagaki 
et al. 

Multi-Character 
NFA [15] 

Altera Stratix II 
EP2S180 

16 
15,506 

n/a 11,640 12,072 n/a 2.67 n/a 

32 n/a 14,765 11,327 n/a 4.00 n/a 

Clark et al. 
NFA decoder [4] Virtex2-8000 

8 7,996 8,852 n/a n/a 0.90 2.20 0.25 
17,537 17,239 n/a n/a 1.01 2.02 0.26 

32 7,996 20,500 n/a n/a 0.39 7.30 0.09 
17,537 37,740 n/a n/a 0.46 7.00 0.10 

Sourdis et al. 
Discrete 

Comparators [11] 
Virtex2-6000 32 2,457 23,843 n/a n/a 0.05 8.06 0.01 

Hutchings et al 
Sharing prefix[7] Virtex2-6000 8 

2,008 2,331 n/a n/a 0.86 0.40 0.04 
4,003 4,375 n/a n/a 0.92 0.35 0.04 
8,003 10,309 n/a n/a 0.78 0.25 0.02 

TABLE III.COMPARSION OF PREVIOUS WORKS 

Figure 9. Pattern length of ClamAV set. 
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duplicate the same circuit of 1-character NFA to support the 
matching of all possible substring of the pattern. The increase 
of Input Chars, the # of register will be decrease.  Another 
advantage is that our proposed PPM architecture also can 
reduce design complexity. The only additional cost is the PPM 
whose cost increases as the number of characters input in each 
cycle increases.  

The Table III summarizes the performance comparison 
between related works and our design. We focus on the 
Char/Slice metric. Our design has the best throughput in all 
approaches. We also can see that our design has higher 
throughput and performance than Brute-Force and Norio 
Yamagaki et al. [15]. The result is that our design has lower 
hardware complexity. This may effects FPGA synthesis tools 
to perform the result during placement and routing the circuits. 

VI. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a novel pre-processing-based 

pattern matching architecture, and implemented it in FPGA. 
The advantage is that the proposed architecture has a higher 
slice utilization and a lower hardware complexity. The 
simulation results show that the proposed architecture performs 
better than the existing approaches that also are based on Brute-
Force scheme, in terms of the throughput and the slice 
utilization. Specifically, the proposed architectures of 2-
character and 4-character designs can achieve the throughputs 
of 4.68 and 7.27 Gbps and the Char/Slice of 2.86 and 2.10, 
respectively. 
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